Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Am Chem Soc ; 143(4): 1722-1727, 2021 02 03.
Article in English | MEDLINE | ID: covidwho-1065802

ABSTRACT

The development of new methods for direct viral detection using streamlined and ideally reagent-free assays is a timely and important, but challenging, problem. The challenge of combatting the COVID-19 pandemic has been exacerbated by the lack of rapid and effective methods to identify viral pathogens like SARS-CoV-2 on-demand. Existing gold standard nucleic acid-based approaches require enzymatic amplification to achieve clinically relevant levels of sensitivity and are not typically used outside of a laboratory setting. Here, we report reagent-free viral sensing that directly reads out the presence of viral particles in 5 minutes using only a sensor-modified electrode chip. The approach relies on a class of electrode-tethered sensors bearing an analyte-binding antibody displayed on a negatively charged DNA linker that also features a tethered redox probe. When a positive potential is applied, the sensor is transported to the electrode surface. Using chronoamperometry, the presence of viral particles and proteins can be detected as these species increase the hydrodynamic drag on the sensor. This report is the first virus-detecting assay that uses the kinetic response of a probe/virus complex to analyze the complexation state of the antibody. We demonstrate the performance of this sensing approach as a means to detect, within 5 min, the presence of the SARS-CoV-2 virus and its associated spike protein in test samples and in unprocessed patient saliva.


Subject(s)
Biosensing Techniques/methods , COVID-19 Testing/methods , COVID-19/virology , Electrochemical Techniques/methods , SARS-CoV-2/isolation & purification , Virion/isolation & purification , Biosensing Techniques/instrumentation , COVID-19 Testing/instrumentation , Electrochemical Techniques/instrumentation , Electrodes , Humans , Point-of-Care Testing , Saliva/virology
2.
Emerg Infect Dis ; 26(9): 2054-2063, 2020 09.
Article in English | MEDLINE | ID: covidwho-607956

ABSTRACT

Since its emergence in Wuhan, China, in December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected ≈6 million persons worldwide. As SARS-CoV-2 spreads across the planet, we explored the range of human cells that can be infected by this virus. We isolated SARS-CoV-2 from 2 infected patients in Toronto, Canada; determined the genomic sequences; and identified single-nucleotide changes in representative populations of our virus stocks. We also tested a wide range of human immune cells for productive infection with SARS-CoV-2. We confirm that human primary peripheral blood mononuclear cells are not permissive for SARS-CoV-2. As SARS-CoV-2 continues to spread globally, it is essential to monitor single-nucleotide polymorphisms in the virus and to continue to isolate circulating viruses to determine viral genotype and phenotype by using in vitro and in vivo infection models.


Subject(s)
Betacoronavirus , Coronavirus Infections/virology , Leukocytes, Mononuclear/virology , Pneumonia, Viral/virology , Virus Replication/genetics , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Betacoronavirus/physiology , COVID-19 , DNA, Viral/genetics , DNA, Viral/isolation & purification , Genotype , Humans , Kinetics , Pandemics , Polymorphism, Single Nucleotide , SARS-CoV-2 , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL